Ignition of Small Molecule Inhibitors in Friedreich's Ataxia with Explainable Artificial Intelligence
DOI:
https://doi.org/10.18662/brain/14.3/475Keywords:
Explainable Artificial Intelligence, Friedreich Ataxia, Predictive accuracy, Quantitative structure-activity relationship, Shapley values, QSARAbstract
Iron (Fe) chelating medicines and Histone deacetylase (HDAC) inhibitors are two therapy options for hereditary Friedreich's Ataxia that have been shown to improve clinical results (FA). Fe chelation molecules can minimize the quantity of stored Fe, and HDAC inhibitors can boost the expression of the Frataxin (FXN) gene in enhancing FA. A complete quantitative structure-activity relationship (QSAR) search of inhibitors from the ChEMBL database is reported in this paper, which includes 437 compounds for Fe chelation and 1,354 compounds for HDAC inhibitors. For further investigation, the IC50 was chosen as the unit of bioactivity, and following data refinement, a final dataset of 436 and 1,163 compounds for Fe chelation and HDAC inhibition, respectively, was produced. The Random Forest (RF) technique was used to generate models (train R2 score, 0.701 and 0.892; test R2 score 0.572 and 0.460, for Fe and HDAC, respectively). The models created using the PubChem fingerprint were the strongest of the 12 fingerprint kinds; hence that feature was chosen for interpretation. The results showed the importance of properties related to nitrogen-containing functional groups (SHAP value of PubchemFP656 is -0.29) and aromatic rings (SHAP value of PubchemFP12 is -0.16). As a result, we explained the effect of the molecular fingerprints on the models and the impact on possible drugs that can be developed for FA with artificial intelligence (XAI), which can be explained through SHAP (Shapley Additive Explanations) values. Model scripts and fingerprinting methods are also available at https://github.com/tissueandcells/XAI.
References
Alper, G. & Narayanan, V. (2003). Friedreich's ataxia. Pediatr Neurol, 28(5), 335-341. https://doi.org/10.1016/s0887-8994(03)00004-3
Aranca, T. V., Jones, T. M., Shaw, J. D., Staffetti, J. S., Ashizawa, T., Kuo, S.-H., Fogel, B. L., Wilmot, G. R., Perlman, S. L., Onyike, C. U., Ying, S. H. & Zesiewicz, T. A. (2016). Emerging therapies in Friedreich's ataxia. Neurodegenerative Disease Management, 6(1), 49-65. https://doi.org/10.2217/nmt.15.73
Bendheim, P. E., Poeggeler, B., Neria, E., Ziv, V., Pappolla, M. A. & Chain, D. G. (2002). Development of indole-3-propionic acid (OXIGON™) for alzheimer's disease. Journal of molecular neuroscience, 19(1), 213-217.
Beutler, E. (2007). Iron storage disease: Facts, fiction and progress. Blood Cells, Molecules, and Diseases, 39(2), 140-147. https://doi.org/10.1016/j.bcmd.2007.03.009
Boddaert, N., Le Quan Sang, K. H., Rötig, A., Leroy-Willig, A., Gallet, S., Brunelle, F., Sidi, D., Thalabard, J.-C., Munnich, A. & Cabantchik, Z. I. (2007). Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood, 110(1), 401-408. https://doi.org/10.1182/blood-2006-12-065433
Bulteau, A. L., Dancis, A., Gareil, M., Montagne, J. J., Camadro, J. M. & Lesuisse, E. (2007). Oxidative stress and protease dysfunction in the yeast model of Friedreich ataxia. Free Radic Biol Med, 42(10), 1561-1570. https://doi.org/10.1016/j.freeradbiomed.2007.02.014
Carracedo, P., Blanco, J., Rodriguez-Fernandez, N., Cedrón-Santaeufemia, F., Nóvoa, F., Carballal, A., Maojo, V., Pazos, A. & Fernandez-Lozano, C. (2021). A review on machine learning approaches and trends in drug discovery. Computational and Structural Biotechnology Journal, 19, 4538-4558. https://doi.org/10.1016/j.csbj.2021.08.011
Cherny, R. A., Atwood, C. S., Xilinas, M. E., Gray, D. N., Jones, W. D., Mclean, C. A., Barnham, K. J., Volitakis, I., Fraser, F. W., Kim, Y.-S., Huang, X., Goldstein, L. E., Moir, R. D., Lim, J. T., Beyreuther, K., Zheng, H., Tanzi, R. E., Masters, C. L. & Bush, A. I. (2001). Treatment with a Copper-Zinc chelator markedly and rapidly inhibits β-Amyloid accumulation in Alzheimer's disease transgenic mice. Neuron, 30(3), 665-676. https://doi.org/10.1016/s0896-6273(01)00317-8
Cook, A., & Giunti, P. (2017). Friedreich's ataxia: clinical features, pathogenesis and management. British Medical Bulletin, 124(1), 19-30. https://doi.org/10.1093/bmb/ldx034
Costantini, A., Laureti, T., Pala, M. I., Colangeli, M., Cavalieri, S., Pozzi, E., Brusco, A., Salvarani, S., Serrati, C. & Fancellu, R. (2016). Long-term treatment with thiamine as possible medical therapy for Friedreich ataxia. Journal of neurology, 263(11), 2170-2178.
Deore, A., Dhumane, J., Wagh, R. & Sonawane, R. (2019). The stages of drug discovery and development process. Asian Journal of Pharmaceutical Research and Development, 7, 62-67. https://doi.org/10.22270/ajprd.v7i6.616
Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L. J., Cibrián-Uhalte, E., Davies, M., Dedman, N., Karlsson, A., Magariños, M. P., Overington, J. P., Papadatos, G., Smit, I. & Leach, A. R. (2017). The ChEMBL database in 2017. Nucleic Acids Research, 45(D1), D945-D954. https://doi.org/10.1093/nar/gkw1074
Goncalves, S., Paupe, V., Dassa, E. P. & Rustin, P. (2008). Deferiprone targets aconitase: Implication for Friedreich's ataxia treatment. BMC Neurology, 8(1), 20. https://doi.org/10.1186/1471-2377-8-20
Gottesfeld, J. M. (2019). Molecular mechanisms and therapeutics for the GAA•TTC expansion disease Friedreich Ataxia. Neurotherapeutics, 16(4), 1032-1049. https://doi.org/10.1007/s13311-019-00764-x
Gramatica, P. & Sangion, A. (2016). A Historical excursus on the statistical validation parameters for QSAR models: A clarification concerning metrics and terminology. Journal of Chemical Information and Modeling, 56(6), 1127-1131. https://doi.org/10.1021/acs.jcim.6b00088
Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S., & Turini, F. (2019). Factual and counterfactual explanations for black box decision making. IEEE Intelligent Systems, 34(6), 14-23.
Herman, D., Jenssen, K., Burnett, R., Soragni, E., Perlman, S. L., & Gottesfeld, J. M. (2006). Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia. Nat Chem Biol, 2(10), 551-558. https://doi.org/10.1038/nchembio815
Hider, Robert C., Ma, Y., Molina-Holgado, F., Gaeta, A. & Roy, S. (2008). Iron chelation as a potential therapy for neurodegenerative disease. Biochemical Society Transactions, 36(6), 1304-1308. https://doi.org/10.1042/bst0361304
Hu, L., Liu, B., Ji, J. & Li, Y. (2020). Tree‐based machine learning to identify and understand major determinants for stroke at the neighborhood level. Journal of the American Heart Association, 9(22). https://doi.org/10.1161/jaha.120.016745
Işık, M., Demir, Y., Kırıcı, M., Demir, R., Şimşek, F. & Beydemir, Ş. (2015). Changes in the antioxidant system in adult epilepsy patients receiving antiepileptic drugs. Archives of physiology and biochemistry, 121(3), 97-102. https://doi.org/10.3109/13813455.2015.1026912
Jiménez-Luna, J., Grisoni, F. & Schneider, G. (2020). Drug discovery with explainable artificial intelligence. Nature Machine Intelligence, 2(10), 573-584. https://doi.org/10.1038/s42256-020-00236-4
Kaur, D., Yantiri, F., Rajagopalan, S., Kumar, J., Mo, J. Q., Boonplueang, R., Viswanath, V., Jacobs, R., Yang, L., Beal, M. F., Dimonte, D., Volitaskis, I., Ellerby, L., Cherny, R. A., Bush, A. I. & Andersen, J. K. (2003). Genetic or pharmacological Iron chelation prevents MPTP-induced neurotoxicity in Vivo. Neuron, 37(6), 899-909. https://doi.org/10.1016/s0896-6273(03)00126-0
Kumar, R., Zakharov, M. N., Khan, S. H., Miki, R., Jang, H., Toraldo, G., Singh, R., Bhasin, S. & Jasuja, R. (2011). The dynamic structure of the estrogen receptor. Journal of Amino Acids, 2011, 812540. https://doi.org/10.4061/2011/812540
Lavecchia, A. (2015). Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today, 20(3), 318-331. https://doi.org/10.1016/j.drudis.2014.10.012
Lew, S.-Y., Yow, Y.-Y., Lim, L.-W. & Wong, K.-H. (2020). Antioxidant-mediated protective role of Hericium erinaceus (Bull.: Fr.) Pers. against oxidative damage in fibroblasts from Friedreich's ataxia patient. Food Science and Technology, 40(suppl 1), 264-272. https://doi.org/10.1590/fst.09919
Li, H. & Nantasenamat, C. (2019). Toward insights on determining factors for high activity in antimicrobial peptides via machine learning. PeerJ, 7, https://doi.org/10.7717/peerj.8265
Li, R., Shinde, A., Liu, A., Glaser, S., Lyou, Y., Yuh, B., Wong, J. & Amini, A. (2020). Machine learning–based interpretation and visualization of nonlinear interactions in prostate cancer survival. JCO Clinical Cancer Informatics(4), 637-646. https://doi.org/10.1200/cci.20.00002
Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. Advanced Drug Delivery Reviews, 46(1), 3-26. https://doi.org/https://doi.org/10.1016/S0169-409X(00)00129-0
Lo, Y. C., Rensi, S. E., Torng, W. & Altman, R. B. (2018). Machine learning in chemoinformatics and drug discovery. Drug Discov Today, 23(8), 1538-1546. https://doi.org/10.1016/j.drudis.2018.05.010
Lundberg, S. & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions.
Lundberg, S. M., Erion, G. G. & Lee, S.-I. (2019). Consistent individualized feature attribution for tree ensembles.
Lundberg, S. M., Nair, B., Vavilala, M. S., Horibe, M., Eisses, M. J., Adams, T., Liston, D. E., Low, D. K.-W., Newman, S.-F., Kim, J. & Lee, S.-I. (2018). Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering, 2(10), 749-760. https://doi.org/10.1038/s41551-018-0304-0
Malik, A. A., Phanus‐Umporn, C., Schaduangrat, N., Shoombuatong, W., Isarankura‐Na‐Ayudhya, C. & Nantasenamat, C. (2020). HCVpred: A web server for predicting the bioactivity of hepatitis C virus NS5B inhibitors. Journal of Computational Chemistry, 41(20), 1820-1834. https://doi.org/10.1002/jcc.26223
Molina-Holgado, F., Gaeta, A., Francis, P. T., Williams, R. J. & Hider, R. C. (2008). Neuroprotective actions of deferiprone in cultured cortical neurones and SHSY-5Y cells. Journal of Neurochemistry, 105(6), 2466-2476. https://doi.org/10.1111/j.1471-4159.2008.05332.x
Molnar, C. (2020). Interpretable machine learning. Self published. https://christophm.github.io/interpretable-ml-book/
Moncada-Torres, A., Van Maaren, M. C., Hendriks, M. P., Siesling, S. & Geleijnse, G. (2021). Explainable machine learning can outperform Cox regression predictions and provide insights in breast cancer survival. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-86327-7
OECD, O. (2007). Environment health and safety publications series on testing and assessment No. 69, Guidance document on the validation of (quantitative) structure-activity relationships [(Q) SAR] models. In: OECD, Paris, France.
Pandolfo, M. (1999). Friedreich's ataxia: clinical aspects and pathogenesis. Semin Neurol, 19(3), 311-321. https://doi.org/10.1055/s-2008-1040847
Pandolfo, M. & Hausmann, L. (2013). Deferiprone for the treatment of Friedreich's ataxia. Journal of Neurochemistry, 126, 142-146. https://doi.org/10.1111/jnc.12300
Reeder, B. J. & Wilson, M. T. (2005). Desferrioxamine inhibits production of cytotoxic heme to protein cross-linked myoglobin: A mechanism to protect against oxidative stress without iron chelation. Chemical Research in Toxicology, 18(6), 1004-1011. https://doi.org/10.1021/tx049660y
Rodríguez-Pérez, R. & Bajorath, J. (2020). Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions. Journal of Computer-Aided Molecular Design, 34(10), 1013-1026. https://doi.org/10.1007/s10822-020-00314-0
Rodríguez, L. R., Lapeña, T., Calap-Quintana, P., Moltó, M. D., Gonzalez-Cabo, P. & Navarro Langa, J. A. (2020). Antioxidant therapies and oxidative stress in Friedreich's Ataxia: The right path or just a diversion? Antioxidants, 9(8), 664. https://doi.org/10.3390/antiox9080664
Saeys, Y., Inza, I. & Larranaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 2507-2517. https://doi.org/10.1093/bioinformatics/btm344
Schaduangrat, N., Malik, A. A. & Nantasenamat, C. (2021). ERpred: a web server for the prediction of subtype-specific estrogen receptor antagonists. PeerJ, 9, https://doi.org/10.7717/peerj.11716
Seznec, H., Simon, D., Bouton, C., Reutenauer, L., Hertzog, A., Golik, P., Procaccio, V., Patel, M., Drapier, J. C., Koenig, M. & Puccio, H. (2005). Friedreich ataxia: the oxidative stress paradox. Hum Mol Genet, 14(4), 463-474. https://doi.org/10.1093/hmg/ddi042
Shapley, L. (1953). A Value for n-Person Games. Princeton University Press, Princeton, 307-317. https://doi.org/https://doi.org/10.1515/9781400881970-018
Shapley, L. S. (2016). 17. A value for n-person games. Contributions to the Theory of Games (AM-28), II, 307-318. Princeton University Press. https://doi.org/doi:10.1515/9781400881970-018
Shobana, G. & Priya, D. N. (2021). Cancer drug classification using artificial neural network with feature selection. 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV),
Soragni, E., Xu, C., Cooper, A., Plasterer, H. L., Rusche, J. R. & Gottesfeld, J. M. (2011). Evaluation of histone deacetylase inhibitors as therapeutics for neurodegenerative diseases. Methods in molecular biology, 793, 495-508.
Soriano, S., Llorens, J. V., Blanco-Sobero, L., Gutiérrez, L., Calap-Quintana, P., Morales, M. P., Moltó, M. D. & Martínez-Sebastián, M. J. (2013). Deferiprone and idebenone rescue frataxin depletion phenotypes in a Drosophila model of Friedreich's ataxia. Gene, 521(2), 274-281. https://doi.org/10.1016/j.gene.2013.02.049
Staszak, M., Staszak, K., Wieszczycka, K., Bajek, A., Roszkowski, K. & Tylkowski, B. (2021). Machine learning in drug design: Use of artificial intelligence to explore the chemical structure–biological activity relationship. Wiley Interdisciplinary Reviews: Computational Molecular Science. https://doi.org/10.1002/wcms.1568
Stefanidou-Voziki, P., Cardoner-Valbuena, D., Villafafila-Robles, R. & Dominguez-Garcia, J. L. (2021). Feature selection and optimization of a ML fault location algorithm for low voltage grids. 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe),
Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M. & Zhao, S. (2019). Applications of machine learning in drug discovery and development. Nat Rev Drug Discov, 18(6), 463-477. https://doi.org/10.1038/s41573-019-0024-5
Waskom, M., Botvinnik, Olga, Kane, Drew, Hobson, Paul, Lukauskas, Saulius, Gemperline, David C, Qalieh, Adel. (2017). mwaskom/seaborn: v0.8.1. Zenodo. https://doi.org/https://doi.org/10.5281/zenodo.883859
Wilson, R. B. (2006). Iron dysregulation in Friedreich ataxia. Semin Pediatr Neurol, 13(3), 166-175. https://doi.org/10.1016/j.spen.2006.08.005
Xue, L. & Bajorath, J. (2000). Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Comb Chem High Throughput Screen, 3(5), 363-372. https://doi.org/10.2174/1386207003331454
Yap, C. W. (2011). PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. Journal of Computational Chemistry, 32(7), 1466-1474. https://doi.org/10.1002/jcc.21707
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 The Authors & LUMEN Publishing House
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant this journal right of first publication, with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work, with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g. post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g. in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as an earlier and greater citation of published work (See The Effect of Open Access).
BRAIN. Broad Research in Artificial Intelligence and Neuroscience Journal has an Attribution-NonCommercial-NoDerivs
CC BY-NC-ND